








ology for the bee data are most similar to that of Primack et al. (28), in that
we both analyze the phenophase (i.e., specimens collected throughout the
entire period of flight or throughout the peak bloom of the plant species),
whereas the other three plant studies are based on the first reported flower
in a given year.

We used t tests to determine whether plant and bee slopes, measured in
units of days of advance per year, were significantly different. To further
determine the difference in advancing rates that can be considered statis-
tically similar, we used an equivalence test (32, 53). In general, when per-
forming an equivalence test, the researcher defines an a priori minimum
difference between datasets, the equivalence interval, which is then as-
sumed as the null hypothesis (H0 = the distributions differ by more than the
chosen equivalence interval). However, in our case, there is no biological
basis for defining a meaningful difference; thus any threshold chosen would
be arbitrary. Instead, we took an alternative approach and calculated the

maximum equivalence interval that would be required to demonstrate that
bee and plant slopes were statistically equivalent.
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Influence of Bee Natural History Traits in Determining Rates of Advance
for Bees. Taxonomic analysis shows that most of the variability
(24%) is among species, with the variance explained by genus being
very low (<1%). We hypothesized that below-ground nesting
species could be less sensitive to temperature changes, as soil can
buffer extreme temperature changes. Despite the fact that as a
group, ground nesters showed weaker phenological advances than
cavity nesters, the natural history trait of nesting type is not sig-
nificant (t= 1.34, df = 8, P= 0.2). Similarly, although the eusocial
bumble bees showed weaker advances than many solitary species,
eusociality as a trait was not significant (t = 1.09, df = 7, P =
0.31). However, most of the variability (76%) is not explained by
the random factors in the model, and is likely due to the stochastic
nature of the specimen collection events. We note that all 10 bee
species that we studied overwinter as adults, as is typical of early-
spring species; thus it is unknown whether bees that overwinter as
larvae are responding to climate change in a similar way.

Data Capture Protocol. Data were captured from museum speci-
mens in the following way. First, full-label data were captured
from all pinned specimens of our study species that could be
accessed from the following museums: the American Museum of
Natural History; the Illinois Natural History Survey; and the
entomology collections maintained by the University of Con-
necticut, Rutgers University, Cornell University, and York
University. Additional data on bumble bees were gathered at the
Peabody Museum of Natural History; the Canadian National
Collection of Insects, Arachnids and Nematodes; the Royal
OntarioMuseum; and the University of Guelph. Once databased,
records were filtered, cleaned, and standardized in the following
ways. First, we included only specimens for which the species
identification was made or verified by a taxonomic expert asso-
ciated with this project. Second, we used only specimens for which
the collection location could be determined at city/town level.
When longitude and latitude were not indicated on the museum
specimen label, we used gazetteers such as the US Geological
Survey Geographic Names Information System (http://geonames.
usgs.gov/pls/gnispublic) to georeference localities. In cases where
mileage from a known locality was cited, we used GEOLocate
software (http://www.museum.tulane.edu/geolocate), not relying
solely on automated outputs but making corrections based on
information about roads and other landmarks as indicated on the
specimen label. In cases where site descriptions or other in-
formation about collecting sites were available (e.g., through
querying of living collectors), we used Google Earth to “virtually
ground truth” localities. Third, we retained only specimens for
which we had data on sex as well as day, month, and year of
collection. We double-checked all database records for which
collection date was an outlier within the distribution of collection
dates for that species against the physical label for that specimen.
We transformed all collection dates to the number of days

elapsed since January 1 and refer to this variable as “collection
day.” In addition to these museum specimen data, we used data
for the contemporary period from multiple research groups who
have collected in northeastern North America (Acknowledg-
ments). These data were of high quality with regard to determi-
nation and spatial and temporal accuracy.

Bumble Bee Analysis.To understand responses in the social bumble
bee species, which have a life history distinct from that of solitary
bees, we performed a preliminary analysis to separately identify
responses of each caste.Bumble beequeens emerge fromdiapause
in early spring, slightly after the earliest emerging solitary bees, and
are therefore the appropriate caste to use for phenological
analyses. In contrast, workers andmales develop later in the colony
cycle such that their presence depends on the multiple factors, in
addition to climate, that contribute to colony growth. We further
restricted our analysis to spring queens, defined as those that
emerged from diapause and attempt to found colonies in the year
that they were collected. New reproductives, including both
queens andmales, are produced at the end of the season, and these
disperse from the nest. Our dataset shows a clear peak in queen
activity in spring, but we did not detect a second peak in late
summer, as also reported by Colla andDumesh (1). To restrict our
analyses to queens that were reproductive in the year of collec-
tion, we selected the lower 75th percentile of queen records (June
21 for Bombus bimaculatus and July 4 for B. impatiens). These
dates correspond to the dates by which most of the spring solitary
bees were already collected (93% and 97% for B. bimaculatus and
B. impatiens, respectively) and, more importantly, overlap little
with records of conspecific male bumble bees (only 13% and 3%
of males were collected by the threshold dates), indicating that
our selected records excluded most new queens.
As expected, bumble bee phenology differs between queens,

males, and workers. For workers, the distribution of collection
dates is centered in midsummer (B. impatiens collection day =
220 ± 35; B. bimaculatus = 172 ± 22.18) and does not show any
phenological advance across years (B. impatiens: year estimate =
0.05 ± 0.06 d·y−1, P = 0.26; latitude estimate = 3.94 ± 1.43
d·degree latitude−1, P = 0.01; R2 = 0.01; B. bimaculatus: year
estimate = −0.10 ± 0.03 d·y−1, P= 0.18; latitude estimate = 2.7 ±
0.58 d·degree latitude−1, P = 0.25; R2 = 0.01). Males of B. bi-
maculatus are collected earlier in the last years (B. bimaculatus:
year estimate = −0.14 ± 0.04 d·y−1, P= 0.001; latitude estimate =
4.37 ± 0.64 d·degree latitude−1, P < 0.001; R2 = 0.17) but not B.
impatiens males (year estimate = −0.05 ± 0.04 d·y−1, P = 0.22;
latitude estimate = 1.54 ± 0.75 d·degree latitude−1, P = 0.04;
R2 = 0.01). Although queens are the most relevant bumble bee
caste for phenological questions, and thus only queens were in-
cluded in the main analysis, the detection of a strong trend to-
ward early emergence for B. bimaculatus males could reflect
earlier colony founding, such that colonies grow faster and males
are produced earlier.

1. Colla SR, Dumesh S (2010) The bumble bees of southern Ontario: Notes on natural
history and distribution. J Entomol Soc Ont 141:39e68.
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Fig. S1. Geographical area studied. Location of all data points used in the analysis.
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Fig. S2. Emergence time of bee species. Boxplot of the overall collection day over all years in all localities showing which bee species emerge earlier in
the season.
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Fig. S3. Correlation between bee species’ phenological advance and species emergence time. Regression of the advance (slope of collection date versus year)
against the median collection day for each bee species (R2 = 0.54). Species that emerge earlier in the season show greater advances.
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Fig. S4. Plant–bee comparison. A species-by-species comparison of the 35 plant species responses from Cook et al. (1) (crosses) and Bradley et al. (2) (triangles)
with responses of the 10 bee species we studied (filled circles; complete data 1880–2010). Plant data from Primack et al. (3) cannot be included because they
were not analyzed at the species level. Data from Abu-Asab et al. (4) refer to a much shorter time period, making the slopes not comparable to these long-term
studies. Asterisks denote plant species included in both plant datasets.

1. Cook BI, Cook ER, Huth PC, Thompson JE, Smiley D (2008) A cross-taxa phenological dataset from Mohonk Lake, NY and its relationship to climate. Int J Climatol 1383:1369e1383.
2. Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701e9704.
3. Primack D, Imbres C, Primack RB, Miller-Rushing AJ, Del Tredici P (2004) Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am J Bot 91:

1260e1264.
4. Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597e612.
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Fig. S5. Equivalence test. Mean differences (filled circles) and 95% confidence interval (CI) (black horizontal line) for each pair of bee and plant studies,
calculated as bee slope – plant slope. Statistical equivalence for a given pair of slopes can be demonstrated at the threshold where the confidence intervals are
contained completely within it. Dotted vertical lines for the smallest [Bradley et al. (1) = 0.06 d·y−1] and largest [Abu-Asab et al. (2) = 0.17 d·y−1] equivalence
intervals are given for visual aid.
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Fig. S6. Sensitivity analysis on the choice of breakpoint date for defining the recent period for which rates of warming increased. In our analysis, we used 1970
as the breakpoint for defining the recent period, based on the consensus of climatologists for northeastern North America (1). We calculated the slope of mean
April temperature versus year, using breakpoints (starting years) between 1960 and 1980, and in all cases using the end point 2010. Although the choice of
breakpoint does influence the slopes (plotted above, means ± SE), for all breakpoints the slopes for the recent period are steeper than for the whole time
period. Furthermore, the breakpoint we use, 1970, is near the middle of the possible values. Thus, the choice of breakpoint does not qualitatively affect our
main conclusion, which is that rates of change have increased in the recent period.

1. Hayhoe K, et al. (2007) Past and future changes in climate and hydrological indicators in the U.S. Northeast. Clim Dyn 28:381e407.
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