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Human persistence depends on many natural processes, termed ecosys-
tem services, which are usually not accounted for in market valuations. 
Global degradation of such services can undermine the ability of agricul-
ture to meet the demands of the growing, increasingly affluent, human 
population (1, 2). Pollination of crop flowers provided by wild insects is 
one such vulnerable ecosystem service (3), as their abundance and diver-
sity are declining in many agricultural landscapes (4, 5). Globally, yields 
of insect-pollinated crops are often managed for greater pollination 
through the addition of honey bees (Apis mellifera L.) as an agricultural 
input (Fig. 1) (6–8). Therefore, the potential impact of declines in wild 
pollinators on crop yields is largely unknown, as is whether increasing 
application of honey bees (9) compensates for losses of wild pollinators, 
or even promotes these losses. 

Wild insects may increase the proportion of flowers that develop into 
mature fruits or seeds (fruit set), and therefore crop yield (e.g., Kg ha−1, 
fig. S1), by contributing to pollinator abundance, species number (rich-
ness), and (or) equity in relative species abundance (evenness). Increased 
pollinator abundance, and therefore visitation rate to crop flowers, 
should augment fruit set at a decelerating rate until additional individuals 
do not further increase (e.g., pollen saturation), or even decrease (e.g., 
pollen excess) fruit set (10–12). Richness of pollinator species should 
increase the mean, and reduce the variance, of fruit set (13), because of 

complementary pollination among 
species (14, 15), facilitation (16, 17), 
or “sampling effects” (18), among 
other mechanisms (19, 20). Pollinator 
evenness may enhance fruit set via 
complementarity, or diminish it if a 
dominant species (e.g., honey bee) is 
the most effective pollinator (21). To 
date, the few studies on the im-
portance of pollinator richness for 
crop pollination have revealed mixed 
results (22), the effects of evenness 
on pollination services remain largely 
unknown, and the impact of wild-
insect loss on fruit set has not been 
evaluated globally for animal-
pollinated crops. 

We tested four predictions arising 
from the assumption that wild insects 
effectively pollinate a broad range of 
crops, and that their role can be re-
placed by increasing the abundance 
of honey bees in agricultural fields: 
(1) for most crops, wild-insect and 
honey bee visitation enhances pollen 
deposition on stigmas of flowers; (2) 
consequently, for most crops, wild-
insect and honey bee visitation im-
proves fruit set; (3) visitation by wild 
insects promotes fruit set only when 
honey bees visit infrequently (i.e., 
negatively interacting effects between 
wild-insect visitation and honey bee 
visitation); and (4) pollinator assem-
blages with more species benefit fruit 
set only when honey bees visit infre-
quently (i.e., negatively interacting 
effects between richness and honey 
bee visitation). 

To test these predictions we col-
lected data at 600 fields on all conti-

nents, except Antarctica, for 41 crop systems (Fig. 1). Crops included a 
wide array of animal-pollinated, annual and perennial fruit, seed, nut, 
and stimulant crops; predominately wind-pollinated crops were not con-
sidered (fig. S2 and table S1). Sampled fields were subject to a diversity 
of agricultural practices, ranging from extensive monocultures to small 
and diversified systems (fig. S2 and table S1), fields stocked with low to 
high densities of honey bees (Fig. 1 and table S2), and fields with low to 
high abundance and diversity of wild insects (fig. S3 and table S2). For 
each field, we measured flower visitation per unit of time (hereafter 
“visitation”) for each insect species, from which we estimated species 
richness and evenness (23). We quantified pollen deposition for 14 sys-
tems as the number of pollen grains per stigma, and fruit set (a key com-
ponent of crop yield, fig. S1) for 32 systems as the percentage of flowers 
setting mature fruits or seeds. Spatial or temporal variation of pollen 
deposition and fruit set were measured as the coefficient of variation 
(CV) over sample points or days within each field (10). The multilevel 
data provided by fields within systems were analyzed with general linear 
mixed-effects models that included crop system as a random effect, and 
wild-insect visitation, honey bee visitation, evenness, richness, and all 
their interactions as fixed effects. Best-fitting models were selected 
based on Akaike’s Information Criterion (AIC) (23). 

In agreement with the first prediction, crops in fields with more 
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flower visits received more pollen on stigmas, with an overall 74% 
stronger influence of visitation by honey bees than by wild insects (Fig. 
2A and table S3). Honey bee visitation significantly increased pollen 
deposition (i.e., confidence intervals for individual regression coeffi-
cients, βi, do not include zero) in seven of ten crop systems, and wild 
insects in ten of 13 systems (fig. S4). Correspondingly, increased wild-
insect and honey bee visitation reduced variation in pollen deposition 
among samples (fig. S5). 

Contrary to the second prediction, fruit set increased significantly 
with wild-insect visitation in all crop systems, but with honey bee visita-
tion in only 14% of systems (Fig. 2B). In addition, fruit set increased 
twice as strongly with visitation by wild insects than by honey bees (Fig. 
2A). These partial regression coefficients did not differ simply because 
of unequal abundance, or disparate variation in visitation between wild 
insects and honey bees. In crop systems visited by both honey bees and 
wild insects, honey bees accounted for half of the visits to crop flowers 
(mean = 51%; CI95% = 40-62%), and among-field CVs for visitation by 
honey bees (mean = 73%; CI95% = 57-88%) and by wild insects (mean = 
79%; CI95% = 62-96%) were equivalent. Furthermore, wild-insect visita-
tion had stronger effects than honey bee visitation, regardless of whether 
honey bees were managed or feral (fig. S6) and, comparing across sys-
tems, even where only wild insects or honey bees occurred (Fig. 2B). 
Moreover, wild-insect visitation alone predicted fruit set better than 
honey bee visitation alone (ΔAIC = 16, model F vs. M in table S4). Corre-
spondingly, the CV of fruit set decreased with wild-insect visitation, but 
varied independently of honey bee visitation (fig. S5). 

Pollinator visitation affected fruit set less strongly than pollen depo-
sition on stigmas (compare regression coefficients in Fig. 2A). This con-
trast likely arose from pollen excess, filtering of pollen tubes by post-
pollination processes, and (or) seed abortion (11, 24), and so reflects 
pollination quality, in part. Intriguingly, the difference in coefficients 
between pollen deposition and fruit set for honey bees greatly exceeds 
that for wild insects (Fig. 2A), indicating that wild insects provide better 
quality pollination, such as greater cross-pollination (14, 16, 17, 19). 
These results occurred regardless of which crop systems were selected 
(fig. S7), sample size (fig. S8), the relative frequency of honey bees in 
the pollinator assemblage (dominance) among systems, the pollinator 
dependence of crops, or whether the crop species were herbaceous or 
woody, or native or exotic (fig. S9). Poor-quality pollination could arise 
if insect foraging behavior, based on focal resources typical of honey 
bees (16, 17), causes pollen transfer between flowers of the same plant 
individual or the same cultivar within a field, thereby limiting cross-
pollination and increasing the incidence of self-pollen interference and 
inbreeding depression (24). The smaller difference in coefficients be-
tween pollen deposition and fruit set for wild insects, and the stronger 
effect on fruit set of wild-insect visitation, suggest that management to 
promote diverse wild insects has great potential to improve global yield 
of animal-pollinated crops. 

The third prediction was also not supported, as fruit set increased 
consistently with visitation by wild insects, even where honey bees visit-
ed frequently (i.e., no statistical interaction: Fig. 2, A and C). In particu-
lar, the best-fitting model (lowest AIC) for fruit set included additive 
effects of both visitation by wild insects and honey bees (model P in 
table S4), suggesting that managed honey bees supplement the pollina-
tion service of wild insects, but cannot replace it. Overall, visitation by 
wild insects and honey bees were not correlated among fields (fig. S10), 
providing no evidence for either competition for the resources obtained 
from crop flowers (pollen, nectar), or density compensation (13) be-
tween wild insects and honey bees at the field scale. Even if honey bees 
displace wild insects (or vice-versa) at the flower scale (16, 17), this is 
unlikely to scale up to the field, as indicated by our data, if mass-
flowering crops provide floral resources in excess of what can be ex-
ploited by local pollinator populations. Therefore, although insect polli-

nators appear not to be limited by crop floral resources, yield was com-
monly pollen limited, as crops set more fruit in fields with more visita-
tion by pollinators (Fig. 2). 

Contrary to the fourth prediction, fruit set increased with flower-
visitor richness independently of honey bee visitation (fig. S11). Corre-
spondingly, the CVs of fruit set decreased with richness; in contrast, 
evenness did not affect the mean or CV of fruit set (figs. S12 and S13). 
Visitation by wild insects increased strongly with richness (Fig. 3), and 
improved model fit (lower AIC), even when richness was included in the 
model (model B vs. G in table S4). However, richness did not enhance 
model fit when added to a model with wild-insect visitation (model F vs. 
G in table S4), suggesting that the effects of richness on fruit set reflect 
increased wild-insect visitation (i.e., co-linear effects: fig. S13). Like 
wild-insect visitation (fig. S10), richness did not correlate with honey 
bee visitation (table S5). Previous studies have shown that agricultural 
intensification reduces both species richness of pollinator assemblages 
and wild-insect visitation (4, 5, 13, 19). Our results for multiple crop 
systems further demonstrate that fields with fewer species experience 
less visitation by wild insects and reduced fruit set, independent of spe-
cies evenness or honey bee visitation. Globally, wild-insect visitation 
signals both species richness and pollination services, and is a relatively 
inexpensive indicator that can be standardized easily among observers in 
field samples (25). 

Large, active colonies of honey bees provide abundant pollinators 
that can be moved as needed, hence their appeal for pollination man-
agement in most animal-pollinated crops (6–8, 26). By comparison, 
methods for maintaining diverse wild insects for crop pollination are less 
developed, and research on such pollination services is more recent (3, 
16, 17, 20, 26, 27) (table S1). Although honey bees are generally viewed 
as a substitute for wild pollinators (3, 6–8), our results demonstrate that 
they neither maximize pollination, nor fully replace the contributions of 
diverse, wild-insect assemblages to fruit set for a broad range of crops 
and agricultural practices on all continents with farmland. These conclu-
sions hold even for crops stocked routinely with high densities of honey 
bees for pollination, such as almond, blueberry or watermelon (Fig. 2 
and table S2). Dependence on a single species for crop pollination also 
carries the risks associated with predator, parasite and pathogen devel-
opment (4, 20, 28). Our results support integrated management policies 
(29) that include pollination by both wild insects as ecosystem service 
providers, and managed species, such as honey bees, bumble bees (Bom-
bus spp.), leafcutter bees (Megachile spp.), mason bees (Osmia spp.), 
and stingless bees (Meliponini) as agricultural inputs (where they are not 
invasive species). Such policies should include conservation or restora-
tion of natural or semi-natural areas within croplands, promotion of land-
use heterogeneity (patchiness), addition of diverse floral and nesting 
resources, and consideration of pollinator safety as it relates to pesticide 
application (3, 16, 17, 20, 27). Some of these recommendations entail 
financial and opportunity costs, but the benefits of implementing them 
transcend the supply of pollination services alone and extend to, for 
example, mitigation against soil erosion, and improved pest control, 
nutrient cycling and water use efficiency (30). Without such changes, the 
on-going loss of wild insects (4, 5) is destined to compromise agricultur-
al yields worldwide. 
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Fig. 1. Locations of the 41 crop systems studied. Symbols indicate the percentage of total visitation rate to crop flowers 
contributed by honey bees (Apis mellifera L.) and wild insects. Honey bees occur as domesticated colonies in 
transportable hives worldwide, as a native species in Europe (rarely) and Africa, or as feral populations in all other 
continents, except Antarctica. 
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Fig. 2. Visitation rate to crop flowers by wild insects enhances reproduction in all crops examined (regression coefficient, βi > 
0), whereas honey bee visitation has weaker effects overall. (A) Overall partial regression coefficients (β+ ± 95% confidence 
interval) for the direct and interacting effects of visitation by wild insects and honey bees on pollen deposition or fruit set 
(models R and Q in tables S3 and S4, respectively). (B) Slopes (βi ± 95% confidence interval) represent the effects of 
visitation by wild insects or honey bees on fruit set for individual crop systems. Cases on the right are systems in which only 
wild insects or only honey bees were present. Data from individual crop systems were standardized by z-scores prior to 
analysis, permitting comparison of regression coefficients in all panels. Letters after the crop name indicate different regions 
(table S1), for example Mango_A and Mango_B are located in South Africa and Brazil, respectively. (C) Given the absence 
of interaction between the effects of visitation by wild insects and honey bees, maximum fruit set is achieved with high 
visitation by both wild insects and honey bees (upper right side of the figure). The plane in orange is the overall regression 
(model P in table S4: the inclination of the surface in the y and x directions reflects the β+ for visitation of wild insects and 
honey bees, respectively), and each point is a field in a crop system (fruit set increases from cyan to dark blue). 
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Fig. 3. Globally, visitation rate to crop flowers by wild insects increases with flower-visitor richness. (A) The line is the 
overall regression, and each point is a field in a crop system. (B) Slopes (βi ± 95% confidence interval) represent the effect 
of richness on wild-insect visitation for individual crop systems. Data from individual crop systems were standardized by z-
scores prior to analysis (after log-transformation for visitation), permitting direct comparison of regression coefficients. 

http://www.sciencemag.org/content/early/recent

